Hyperbolic Polynomials and Generalized Clifford Algebras
نویسندگان
چکیده
We consider the problem of realizing hyperbolicity cones as spectrahedra, i.e. as linear slices of cones of positive semidefinite matrices. The generalized Lax conjecture states that this is always possible. We use generalized Clifford algebras for a new approach to the problem. Our main result is that if −1 is not a sum of hermitian squares in the Clifford algebra of a hyperbolic polynomial, then its hyperbolicity cone is spectrahedral. Our result also has computational applications, since this sufficient condition can be checked with a single semidefinite program.
منابع مشابه
On hyperbolic Clifford algebras with involution∗
The aim of this article is to provide a characterization of quadratic forms of low dimension such that the canonical involutions of the their Clifford algebras are hyperbolic.
متن کاملKravchuk Polynomials and Induced/Reduced Operators on Clifford Algebras
Kravchuk polynomials arise as orthogonal polynomials with respect to the binomial distribution and have numerous applications in harmonic analysis, statistics, coding theory, and quantum probability. The relationship between Kravchuk polynomials and Clifford algebras is multifaceted. In this paper, Kravchuk polynomials are discovered as traces of conjugation operators in Clifford algebras, and ...
متن کاملGeneralized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories
By viewing Clifford algebras as algebras in some suitable symmetric Gr-categories, Albuquerque and Majid were able to give a new derivation of some well known results about Clifford algebras and to generalize them. Along the same line, Bulacu observed that Clifford algebras are weak Hopf algebras in the aforementioned categories and obtained other interesting properties. The aim of this paper i...
متن کاملRepresentations of Clifford algebras with hyperbolic numbers
The representations of Clifford algebras and their involutions and antiinvolutions are fully investigated since decades. However, these representations do sometimes not comply with usual conventions within physics. A few simple examples are presented, which point out that the hyperbolic numbers can close this gap. PACS: 03.65.Fd; 02.20.Sv; 02.40.Tt; 02.40.-k; 04.50.+h MSC: 81R05; 11E88; 51H30; ...
متن کاملDerivations on Certain Semigroup Algebras
In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 51 شماره
صفحات -
تاریخ انتشار 2014